Straggler Mitigation and Latency Optimization in
Blockchain-based Hierarchical Federated Learning

Zhilin Wang, Xiangdong Hu, Qin Hu, Minghui Xu, Zehui Xiong

Abstract—Cloud-edge-device hierarchical federated learning
(HFL) has been recently proposed to achieve communication-
efficient and privacy-preserving distributed learning. However,
there exist several critical challenges, such as the single point of
failure and potential stragglers in both edge servers and local
devices. To resolve these issues, we propose a decentralized and
straggler-tolerant blockchain-based HFL (BHFL) framework.
Specifically, a Raft-based consortium blockchain is deployed on
edge servers to provide a distributed and trusted computing
environment for global model aggregation in BHFL. To mitigate
the influence of stragglers on learning, we propose a novel
aggregation method, HieAvg, which utilizes the historical weights
of stragglers to estimate the missing submissions. Furthermore,
we optimize the overall latency of BHFL by jointly considering
the constraints of global model convergence and blockchain
consensus delay. Theoretical analysis and experimental evaluation
show that our proposed BHFL based on HieAvg can converge
in the presence of stragglers, which performs better than the
traditional methods even when the loss function is non-convex
and the data on local devices are non-independent and identically
distributed (non-IID).

Index Terms—Hierarchical federated learning, blockchain,
stragglers, convergence analysis, latency optimization

I. INTRODUCTION

As a representative paradigm of distributed machine learn-
ing, federated learning (FL) significantly reduces the cost of
data transmission and protects data privacy [1]-[3]. In FL,
local devices (i.e., FL clients) such as smartphones [4] and
vehicles [5] upload the trained local models to the parameter
server (i.e., aggregator) for global model aggregation. How-
ever, FL needs multiple rounds of global model aggregation to
obtain the optimal model, which not only consumes substantial
communication resources of local devices but may cause
network congestion and thus long latency of receiving updates
at the server. Therefore, communication efficiency becomes
one of the major bottlenecks of FL.

Hierarchical federated learning (HFL) provides a promising
solution to the above challenge [6]-[9]. The basic idea is to
conduct multiple intermediate aggregations at proxy servers
(e.g., edge servers) before global aggregation on the central
server. Local devices upload the model updates to a closer

Zhilin Wang is with the Department of Computer Science, Purdue Univer-
sity, Indianapolis, Indiana, USA. Email: wang5327 @purdue.edu

Xiangdong Hu is with the Department of Computer Science, Georgia State
University, Atlanta, Georgia, USA. Email: xhu20@student.gsu.edu.

Qin Hu (corresponding author) is with the Department of Computer Sci-
ence, Georgia State University, Atlanta, Georgia, USA. Email: ghu@gsu.edu

Minghui Xu is with the School of Computer Science and Technology,
Shandong University, China. E-mail: mhxu@sdu.edu.cn

Zehui Xiong is the School of Electronics, Electrical Engineering and Com-
puter Science, Queen’s University Belfast, UK. E-mail: z.xiong@qub.ac.uk

proxy server for model aggregation, reducing their commu-
nication cost. As demonstrated in [10], HFL can effectively
reduce communication latency. Nevertheless, HFL still faces
many problems. First, HFL requires a central server for global
model aggregation; once this central server fails, HFL cannot
work anymore. In addition, proxy servers in the intermediate
layer introduce a new attack surface, where the privacy leakage
of local model updates and other malicious attacks (e.g., model
poisoning attacks) become severe threats [11]-[14].

Blockchain [15], [16], as a distributed ledger technology,
has been widely applied to the fields of distributed machine
learning [17]-[19]. Considering that blockchain can establish
a decentralized and trustless computing environment, we can
similarly implement blockchain on proxy servers to take the
place of the central server in HFL to reduce the risks of the
single point of failure and malicious attacks. There exist some
studies [20], [21] deploying blockchain in HFL to protect
privacy and improve efficiency, termed blockchain-based HFL
(BHFL); but they still rely on the central server to aggregate
global models. Furthermore, applying blockchain on HFL can
lead to extra latency during broadcasting, verification, and con-
sensus to generate a new block. Although there exists research
that optimizes the latency of BHFL by designing resource
allocation mechanisms among devices [22], the influence of
blockchain consensus on latency remains a challenge.

Apart from the latency issue, the challenge of stragglers
also remains unaddressed in BHFL. Here the straggler refers
to any participant, including local devices and proxy servers,
that cannot submit the model updates in time due to insuf-
ficient computing resources or unstable network conditions.
The communication efficiency would be directly affected by
the stragglers, as waiting for updates from all clients can
lead to significant time consumption. Besides, in the case of
permanent stragglers that never rejoin FL, simply abandoning
their updates can lead to poor performance of the global
model, especially when the data of local devices are non-
independent and identically distributed (non-IID) [23].

The existing studies mitigating the impact of stragglers on
FL fall into three lines, i.e., utilizing coded computing tech-
nology [24]-[26], manipulating delayed gradients [27], [28],
and employing straggler-aware adaptation [29], [30]. The
coded computing method requires extra encoding/decoding
processes and data transmission, which is not computation or
communication efficient to be applied to various deep learn-
ing models. The scheme of manipulating delayed gradients
can well address stragglers lacking computing power, where
they can still submit partial gradients for model aggregation;
however, this method cannot deal with stragglers caused by



network disconnection or congestion, where the aggregator
cannot obtain any data from stragglers within the required
time. For straggler-aware adaptation, existing methods mitigate
stragglers by reusing the client’s most recent update if the cur-
rent submission is unavailable; but these adaptations hinge on
historical client updates and accurate profiling of “invariant”
components, thus introducing estimation bias and extra storage
overhead. In HFL, proxy servers can also become stragglers
due to unexpected connection failures; since proxy servers
are not responsible for model training, none of the above
approaches premised on client-side participation can resolve
proxy-server stragglers. In summary, there is no existing
solution for the straggler challenge in HFL.

To fill these gaps, we propose a fully decentralized BHFL
framework, which is proven to be convergence-guaranteed
even with stragglers existing in local devices and edge servers.
Specifically, we deploy a lightweight Raft-based consortium
blockchain [31] on edge servers to provide a secure and trusted
computing environment for HFL. To address the challenge of
stragglers in BHFL, we design a novel aggregation algorithm,
named hierarchical averaging (HieAvg), to aggregate model
updates submitted from local devices and edge servers at
the edge aggregation and global aggregation phases, respec-
tively. The basic idea of HieAvg is to estimate the missing
weights with the differences between the historical weights
of stragglers, and HieAvg can work well with non-IID data
and non-convex loss functions. Further, to improve the system
efficiency of BHFL, we optimize the overall latency of BHFL
by balancing the performance of the global model and the time
cost of blockchain consensus.

To the best of our knowledge, this is the first work to solve
the problem of stragglers in BHFL. The proposed HieAvg is
applicable to not only our considered BHFL framework but
also the general HFL scenarios. The main contributions can
be summarized below:

e We propose a decentralized BHFL framework that can
converge even when there are stragglers in both local
devices and edge servers with non-convex loss function
and non-IID data.

o We design HieAvg, a novel model aggregation method for
BHFL, to mitigate the negative impact of stragglers by
utilizing their historical weights to estimate the missing
weights, and its convergence is theoretically proved.

o We optimize the total latency of BHFL by deriving the
optimal number of aggregation rounds on edge servers
under the constraints of blockchain consensus time con-
sumption and global model convergence.

« Rigorous theoretical analysis and extensive experiments
are conducted to prove the convergence of BHFL with
HieAvg and evaluate the validity and efficiency of our
proposed schemes.

The rest of this paper is organized as below. We intro-
duce the system model in Section II. Then, we analyze the
convergence of BHFL with HieAvg in Section IV, and the
latency optimization is shown in Section V. Next, we conduct
experiments to support our framework and mechanisms in
Section VI. The related work is discussed in Section VIIL

Finally, we conclude this work in Section VIII. The detailed
proofs of theorems and lemmas are presented in the appendix.

II. BLOCKCHAIN-BASED HIERARCHICAL FEDERATED
LEARNING

In this section, we introduce our considered blockchain-
based hierarchical federated learning (BHFL) framework, con-
sisting of an HFL system and a blockchain system, where
the blockchain is applied to improve efficiency and provide
a trustworthy computing environment for the HFL system.
Specifically, we discuss the overview of BHFL, the detailed
descriptions of the HFL process and blockchain system, and
the challenges of stragglers and latency in this framework.

A. System Overview

As shown in Fig. 1, the considered BHFL system comprises
multiple edge servers and local devices, where a consortium
blockchain runs on edge servers. Specifically, local devices and
edge servers form several FL systems. Let i € {1,2,--- , N}
denote the edge server, where N is the total number of
edge servers. For edge server i, there are J; local devices
connected, and we let j € {1,2,---,.J;} denote each local
device connected with edge server i. These devices involved
in BHFL are heterogeneous, which means they have various
computing and communication resources, as well as different
raw data distributions, i.e., non-independent and identically
distributed (non-IID) data. Denote k € {1,2,--- , K} as the
edge aggregation round, i.e., the round of model aggregation
on edge servers based on the local model updates from
connected devices, where K is the total number of edge
aggregation rounds; let ¢ € {1,2,---,T} be the global
aggregation round, i.e., the round of model aggregation on
the blockchain system based on the submissions from edge
servers, where 7' is the total number of global aggregation
rounds. We use the pair (¢, k) to denote edge aggregation round
k in the global aggregation round ¢ and use (i,7) to denote
local device j connected to edge server <.

.--~" " Raft-based Consortium Blockchain ™~~~

e ((¢a) 5% 4 Global AN
, ) . N
R4 _y/é(_ Aggregation N
P -
ST g -
' () |
‘\ ------------------------------------- . 3 e .
N 3) Blockchain @ b=ls !
Consensus .

2) Edge

-

_____ Y 1) Updates
-------------------- Submission

0 & [ O &=

| Model Training & Edge Aggregation < Global Aggregation @ Ledger |

Fig. 1. Blockchain-based Hierarchical Federated Learning.

The workflow of our proposed BHFL system can be de-

scribed below:
1) Updates Submission: after multiple local iterations, i.e.,
the gradients updating of Stochastic Gradient Descent



(SGD), local devices submit their trained local models
to the connected edge servers.

2) Edge Aggregation: edge servers aggregate the received
local models to get the edge models by our proposed
HieAvg which will be detailed in Section III, and return
them to local devices for the next round of training till
finishing K rounds of edge aggregation.

3) Blockchain Consensus: while local devices are con-
ducting model training using their own data, edge
servers can perform the consensus algorithm in the
upper blockchain network, where one edge leader will
be elected before global aggregation. (see Section II-C
for details).

4) Global Aggregation: after K rounds of edge aggrega-
tion, edge servers transmit their latest edge models to
the edge leader for global model aggregation by HieAvg,
and the edge leader will return the updated global model
to edge servers for the next round of training till the
BHFL model converges.

B. Hierarchical Federated Learning

In FL, the participants work together to solve a finite-sum
optimization problem with SGD, while in hierarchical FL
(HFL), the hierarchical SGD (H-SGD) is adopted [9]. The
main difference between SGD and H-SGD is that H-SGD
requires several rounds of intermediate aggregation before
global aggregation.

In HFL, we can treat the framework of local devices and
their connected edge server ¢ as FL, and its objective function
can be expressed as:

J.
o
gmin %) = -3 ),
Zj:l

wf."kGRd

i

where F; ;(-) is the loss function of local device j and F;(-)

is the loss function of edge server ¢; and wfk is the weights

of local device (i,7) in round (t,k) and w}" is the weights
of edge server ¢ in round (¢, k).

On local device (i, j), the model is updated by:

wii T = wif =tV E (i 6, (1)
where 7% is the learning rate in round (¢, kZ; and
VF”(wff,gfjk) is the gradient of F”(wff) with §f:j being
the random data sample from the raw data of local device
(i,7), and we can assume EJ[VF”(wff)] = VE(w'")
where E(-) is the expectation notation.

On the edge leader, the objective function is defined as:

. t 1 ad t
ai%erﬁin F(w') = N ;Fz(wi),
where F(-) is the global loss function, w? is the global weights
in round ¢ and w! is the weights of edge server ¢ in round ¢
with w! = w’.

As for the gradient of edge server i, we can assume
E;[VF;(w!)] = VF(w'). After T rounds of global aggre-
gation, we can get the final global model w”, which should
be as approximate as possible to the optimal global model w*
of F(+).

C. Blockchain

Generally, there are two ways for synchronizing the model
updates in HFL so that the edge servers and local devices
can get the latest models in the next round, i.e., centralized
and distributed. In the centralized method, a cloud server is
employed to send the latest global model to the edge servers,
such as the client-edge-cloud framework presented in [10];
while in the distributed way, local model updates are directly
shared among peering edge servers via broadcasting, and
then each server can derive the global model based on the
received updates from others. Though the distributed method
can eliminate the single point of failure, broadcasting models
among edge servers can be costly in communication resource
consumption and latency.

To solve this challenge, blockchain is widely employed to
assist in enhancing the efficiency and performance of HFL.
In general, two essential requirements have to be satisfied.
First, the deployment of blockchain in HFL cannot bring
a significant latency increase to the global model conver-
gence, including the latency of computing, communication,
and blockchain consensus. Some of the existing studies use
computing-intensive blockchain consensus, such as Proof of
Work (PoW) [32], and require model sharing among par-
ticipants before global model aggregation, making the time
cost extremely high [33]. Second, the implemented blockchain
system needs to be capable of protecting data privacy, i.e.,
local model updates and global models, from leakage.

For these considerations, we propose a consortium
blockchain based on the Raft consensus protocol [34]. Since
the consortium blockchain only allows authorized nodes to
be included, the edge servers in this network can thus be
trusted; further, as a leader-based consensus mechanism, Raft
has been proven to be efficient and reliable. The main working
process of the Raft-based consortium blockchain in BHFL can
be summarized into the following three steps:

1) Leader Election: edge servers on the blockchain con-
duct the leader election processl, which should be
completed before submitting local models for global
aggregation so that the latency of BHFL can be reduced
compared to the existing work [33].

2) Model Submission: edge servers submit their latest edge
models to the elected edge leader, and then the leader
will aggregate those models to update the global model.

3) Block Generation: the leader generates a new block
that contains all edge models from edge servers and the
updated global model, and broadcasts this block to all
edge servers on the blockchain.

Here the Raft-based consortium blockchain in the BHFL
system is mainly employed to avoid the single point failure
and provide a trustless intermediary for synchronizing model
updates among edge servers. It is worth noting that the edge
servers in the blockchain system are required to finish the
leader election process before conducting global aggregation to
reduce latency and communication overhead due to broadcast-
ing. As for the details of the latency in blockchain consensus

IFor brevity, we omit the detailed leader election process of Raft, which
can be found in [34].



influencing the total system latency, which has been rarely
explored in the existing studies, we will discuss them in
Section V.

D. Challenges of BHFL

As mentioned before, there exist two main challenging fac-
tors in BHFL that impact learning performance, i.e., stragglers
and latency. We denote L. as the predefined waiting period
of each edge aggregation round and L, as the waiting time
of each global aggregation round. The stragglers are BCFL
participants that cannot upload models within the required
waiting period in both the layers of local devices and edge
servers. On the one hand, local devices may not submit
model updates to edge servers in time; on the other hand,
edge servers may miss the required deadline for submitting
edge models. These stragglers can result in long latency for
the model training. In addition to the latency caused by
stragglers, the numbers of local devices, edge servers, edge
aggregation rounds, and global aggregation rounds, as well as
the blockchain consensus process, will influence the total time
consumption.

To resolve the challenge brought by stragglers in BHFL,
we first propose a novel model aggregation algorithm, named
HieAvg, to mitigate the impact of stragglers in both layers
of BHFL, which will be elaborated in Section III. Further, to
deal with the challenge of latency, we design an optimization
scheme detailed in Section V.

III. HIERARCHICAL AVERAGING AGGREGATION METHOD

In this section, we elaborate on our proposed hierarchical
averaging (HieAvg) aggregation method. The basic idea of
HieAvg is to use the historical weights of stragglers to estimate
their delayed weights. Generally speaking, there are two main
parts of HieAvg: the first part is the basic aggregation method
when edge servers would like to collect model submissions
from all clients no matter whether there is any straggler or
not; and the second is the straggler mitigation method with
two steps which will be detailed below.

A. Basic Aggregation Methods of HieAvg

In the case that edge servers and the edge leader wait for
weights from all connected devices without dealing with the
stragglers’ impact on BHFL convergence, they may use the
following aggregation methods to update the edge models and
the global model.

1) Edge Aggregation: Let Mf ** be the number of devices
that can submit weights to edge server ¢ in round (¢, k) within
the time requirement, and let Sf * denote the number of
stragglers among local devices in round (¢, k). Thus, we have
Ji = Mfk + Sf’k, and can get the model of edge server i in
round (¢, k) as

Ji M;"k S:’k

1 1
t,k tk _ t,k t,k
w; = jz E w; ;= 71( § Wil + § wi,s)7 2
m=1 s=1

j=1

where wfﬁl and wff are the in-time and delayed local weights
in round (¢, k), respectively.

2) Global Aggregation: We use the following equation to
update the global model in round t:

N J Mt Jt St Jt
wt — Z 7 wt — Z m wt + s wt
N 7 N m N ER
i=1 Zi:l Ji m=1 Zi:l Ji s=1 Zz’:l Ji
€)]

where M? is the number of edge servers submitting updates
to the edge leader timely in round ¢, and S? is the number
of stragglers among edge servers in round ¢; J! and J! are
the numbers of local devices connected to edge server m
submitting models in time and that of straggler s in round
t, respectively; w!, and w! are the in-time and delayed edge
weights in round ¢, respectively.

Note that even if there is no straggler, i.e., Sf * — 0 and

St = 0, the BHFL system can also apply the above equations
to aggregate models.
Remark: Based on the basic aggregation methods of HieAvg,
we can find that it differs from FedAvg [1] in the following
two aspects: i) HieAvg does not require the data size in
edge aggregation, avoiding additional data disclosure of local
devices; and ii) HieAvg uses the ratio of J; to the total number
of local devices in global aggregation, which is more suitable
for HFL, and FedAvg cannot be applied in this situation.

B. Straggler Mitigation of HieAvg

In this part, we detail the design of HieAvg to mitigate
the stragglers’ impact, including the steps of cold boot and
estimation of delayed weights.

1) Cold Boot: To better estimate the stragglers’ delayed
submissions, the BHFL system has to collect enough historical
data in the process of cold boot. Denoting 7, as the number
of model submission rounds, we require all participants,
including local devices and edge servers, to finish at least
two rounds of model submission, i.e., T, > 2, so that the
necessary amount of information can be collected. Ideally, all
devices can submit models in time for the first 7. rounds, and
the step of cold boot can be described in Algorithm 1. The
edge servers need to wait for submissions from local devices
for T, global aggregation rounds (Line 1). During cold boot,
we use (2) and (3) to aggregate the models on edge servers
and the edge leader, respectively (Lines 2-13).

In the case that one device loses connection after the first
round of model submission while other devices can continue
working, if the device is reconnected and submits weights after
multiple rounds, the resubmitted weights will be considered as
the historical weights.

2) Estimation of Delayed Weights: After cold boot, we
design the scheme of delayed weight estimation to mitigate
the impact of stragglers by estimating their delayed weights
via the historical weights.

Estimation of Delayed Local Weights: Since the edge
servers have the historical weights of stragglers, we can use
those weights to estimate the delayed weights of stragglers.
We have to ensure that the difference between the estimated
weights and the real delayed weights is as small as possible.
To that aim, we design an approximate method by utilizing the
difference in historical weights of stragglers to estimate their



Algorithm 1 Cold Boot in HieAvg

Algorithm 2 Estimation of Delayed Weights in HieAvg

Require: 7., N, K, J;, nt*

Ensure: w’*
1: for t € {1,--- ,T.} do
2. forie{l,---,N} parallelly do
3: for ke {l,--- K} do
4 for j € {1, -, J;} parallelly do
s: wi™ + updated by (1)
6: end for
7 P updated by (2)
8 end for
9 wt — w

10:  end for
11:  w' + updated by (3)
12: end for

13: return w7e

delayed weights in round (¢, k). The estimation of delayed
weights is:

—tk _ tk-1 th—1
wi,s - wz s + E [A ]
where AE"I:*l = wf‘f*l - wff %, and Ek[Atk ' is the

expectation of A;’f_l used to avoid large estimation bias.

Then, the estimated wfk can be written as:

Stk

Z tkl

]\4t Jk

apEe

wt = +EATTD],

“4)

where fyff = fyo)\k/ is the decay factor used to scale estimated
delayed weights with v € (0, 1) being the initial decay factor,
A € (0,1) being the scalar, and k&’ > 1 being the missing edge
aggregation rounds of stragglers.

Estimation of Delayed Edge Weights: As for stragglers
among edge servers, we use the same estimation method for
dealing with stragglers among local devices. Then, we can get
the estimated w? by the following equation:

M! t st At Jt
T = ot Y Rt EALY),
m=1 Zz 1 s=1 Zz 1
&)
where 7! = 0)\'5/ is the delay factor with ¢’ being the missing

global aggregation rounds of stragglers; and Af~! = w!=1 —

wS_Q.
The process of estimating delayed weights in HieAvg is de-
tailed in Algorithm 2. If there are stragglers, the corresponding
edge server and the edge leader will use the estimation method
to update the models (Line 4 and Line 9). Please note that
this algorithm is used to handle situations where there exist
stragglers; while if there are no stragglers, the model updating
will be the same as Algorithm 1. Here we can see that the
time complexity of HieAvg, including Algorithms 1 and 2, is
O(T x N x K x J).

In fact, there exist two types of stragglers for both the
stragglers among local devices and edge servers in BHFL:

Require: T, T.., N, K, J;, 7o, A\, n"**

Ensure: w”
1: fort e {T, +1,---,T} do
22 forie{l,--- ,N} parallelly do
3 for k 6 {1,---,K} do
4 <— updated by (4)
5: ke wy
6: end for
7 w!h — wh’™
8: end for
9: W' + updated by (5)

10: wt — wt
11: end for

12: return w”

permanent stragglers and temporary stragglers. Without loss
of generality, we take the stragglers among edge servers as an
example to clarify this point. First, if the stragglers will never
return to join the BHFL training process due to the loss of
communication connection or location change at global round
t, then we can use the above method to estimate the updates
of stragglers starting from round ¢ to the end of training. We
call this kind of stragglers permanent stragglers. Second, if the
stragglers will return after ¢ > 1 rounds, we can still first use
the above method to estimate the updates of stragglers during
rounds ¢ to ¢t + ¢/, and once the stragglers return in round
t+t +1, they can submit their latest models. These stragglers
are named temporary stragglers. Intuitively, permanent strag-
glers are more harmful to BHFL than temporary stragglers
since the bias will be larger if the stragglers disappear. Thus,
we treat the permanent stragglers as the worst case in the
following section of convergence analysis.

IV. CONVERGENCE ANALYSIS OF HIEAVG-BASED BHFL

In this section, we analyze the convergence of BHFL with
HieAvg. We first introduce the necessary assumptions for
theoretical proof and then discuss the convergence of edge
aggregation and global aggregation subsequently.

A. Assumptions

Here we introduce two assumptions that are important for
the proof of convergence. The first one indicates the property
of the loss function employed in our proposed BHFL frame-
work, which has also been widely included in the existing
studies [9], [22], [35]. The second ensures that the model
updating process will not lead to a significant bias.

Assumption 1. (Lipschitz-smoothness) The loss function F'(-)
is continuously differentiable and the gradient function of F(-)
is Lipschitz continuous with Lipschitz constant L > 0, which
means ||VF(w) — VF(w)||?> < L||w—w]||? for all w,w € R.
It also implies that

F(w) ~ F(m) < VEw)" (0~ w) + ¢ |w— ],

where || - ||? is the ly norm.



Assumption 2. (Bounded Variance) Three types of bounded
variance are assumed:
1) Bounded Variance of Weight Difference:

Kk Jk—
Exlll(wiy —wii ) = AgylP] < 675,
o[l (wi —wi™h) — Al]?] < 67,

where A; ; = Ek[Af’;?_l] and A; = E4[AL); and b, ;,0; €
R*. ’

2) Bounded Variance of Estimated Gradients:

E(||VE,,;(@}}) - VE@;")|]’] < 67,
E(||VE((w;) - VF@")|[*] < 6",

where VEF,(w;") = E;[VE;;@%)] and VF(w'
E;[VF;(w?)]; and §',6" € ]R+

3) Bounded Variance of Estimated Delayed Weights:

) =

Eif|[w* - w[%) < 3,

Eq[|[w — || <37,

where WHF = E; [@fk] is the auxiliary variable inspired by
[36], [37]; and W = E,[w']; and 5,5 € R

Assumption 2.1 is unique in this work since we use the
difference of weights to estimate the delayed weights, which
is assumed to have bounded variance; and Assumptions 2.2
and 2.3 are about the estimated weights, guaranteeing that the
estimation method will not lead to significant bias.

It is worth noting that the learning rate n** = m
is assumed to be dynamic, where 7y is the initial learning
rate for all the local devices and d is the decay rate. Besides,
we have no assumption on the convexity of the loss function;
however, since the non-convex case is more challenging, we
will analyze the convergence of HieAvg in BHFL with the
non-convex loss function in the below.

B. Convergence of HieAvg

Before we discuss the convergence of HieAvg on both
layers, we need to introduce two useful lemmas which will
be applied in the proof of convergence.

Lemma 1. Under Assumption 2, by applying HieAvg on edge
servers, the difference between the estimated edge model in
round (t,k + 1) and that in round (t,k) is bounded by

t,k
—tk+1  _tk _ k —t.,k ; 2
w; - w," < — n* VF(w;") = f] (A + 51'7,7')7
1
spr
where =i— denotes the proportion of stragglers among local

devices connected to edge server i in round (t,k).

Lemma 2. Under Assumption 2, by applying HieAvg on the
edge leader, the difference between the estimated global model
in round t + 1 and that in round t is bounded by

Es[¢] s*
NE[] TN
KE,[JY]

_ slYsl t.k F—t
NE7]" VF (@),

—
EHl—EtS(S _[

(Ai +67)]

t
where SW is the proportion of stragglers among edge servers

in round t.

Both Lemma 1 and Lemma 2 imply that the difference in
estimated weights will be affected by the previous weight dif-
ferences, the delayed weights, and the proportion of stragglers.
By now, however, it is still unclear how these factors influence
the convergence of HieAvg based on the above two lemmas,
which will be explored in the following two subsections.

1) Convergence on Edge Servers: We first investigate the
convergence of HieAvg on edge servers. By analyzing the
convergence on edge servers, we can see the effectiveness of
our proposed HieAvg algorithm.

Theorem 1. Under Assumption 1 and Assumption 2, with
dynamic learning rate n*"*, the number of stragglers Sf * and

. . t k 1 .
the number of connkected local devices J;, if n» T3 With
[

L > 0 and o= | (A; j+6i;)—0 > 0, by applying Lemma
1, the convergence of HieAvg on edge server i is bounded by

K
1 itk
= S E(IVE @)
k=1
2]Ek: [’ﬂt"k]6/2 ]

<2[Fi(w?) — Filw) + LEg[n**]+2Ex [n**]—1
(LEg[n"F] + 2B [nt+] — 1)VK
Ex[S]" =
(2+ L)[Vo%(ﬁm +6i,5) — 0]
LEg[ntF] + 2Ex[ntF] — 1 ’

where w{ is the initial weights of edge server i and w; is the
optimal weights of edge server i.

The above inequality provides a theoretical upper bound
for the averaging expectation of squared gradient norms of
F;(-), which indicates that the loss function of edge i can
converge to a critical point with enough edge aggregation
rounds, smaller learning rate, and fewer stragglers among local
devices. Besides, Theorem 1 can be employed to analyze the
convergence of traditional FL, which is guaranteed to converge
even with the existence of stragglers if K is well selected.

2) Convergence on the Edge Leader: Now, we can discuss
the global convergence on the blockchain.

Theorem 2. Under Assumption 1 and Assumption 2, with
dynamic learning rate n'*, the number of stragglers S*, and
the number of connected local devices J;, if nt* > 1

L+ 2KE.[J]]
. . -, NE; [J;]
with L > 0 and J%EE:L[]}l] + ’yoE‘J[\}g ](Ai +62) =30 >0, by

applying Lemma 2, the convergence of HieAvg on the edge
leader is bounded by

T
1 _
fZEHIVF(wt)H?]
t=1
VEE " *|E[Jf] (5”2]

<2[F(w0)—F(w) NE]
VI (VR B ¢ LB ] - 1)
/!

2+ L) [tk + 0 2 (A + 67) - 7
oK BB LRy k) -1




where w° is the initial global weights; for convenience, we

use ) to represent the upper bound at the right side of the
above inequality.

Based on the above theorem, we can see that the averaging
expectation of squared gradient norms of F(-) has an upper
bound, which implies that BHFL with HieAvg can converge.
Besides, by analyzing Theorem 1 and Theorem 2, we can
obtain the following two corollaries to further explain the
convergence performance of HieAvg.

Corollary 1. Given the fixed values of other influence factors,
the convergence performance can be better achieved with more
edge aggregation rounds (K).

Corollary 1 indicates that we can speed up global conver-
gence with more edge aggregation rounds. This is because if
there are more rounds of edge aggregation, each edge server
can get a model with a smaller loss, which accelerates the
convergence of the global model during the phase of global
aggregation.

Corollary 2. Given the fixed values of other influence factors,
the convergence performance can be better achieved with
fewer stragglers in local devices and edge servers ( Sf * and

St).

Corollary 2 demonstrates the influence of stragglers on
the convergence of HieAvg. The occurrence of stragglers is
usually caused by unpredictable network conditions, and it is
nearly impossible to eliminate their effects on model training
completely; but with our proposed HieAvg, the convergence
of BHFL is guaranteed.

In summary, the HieAvg algorithm is convergence-
guaranteed with a non-convex loss function and non-IID data
even when there are stragglers among local devices and edge
servers in BHFL.

V. LATENCY OPTIMIZATION OF BHFL

In this section, we target to resolve the challenge of latency
in BHFL by studying the latency optimization of our proposed
framework.

A. Latency Model

1) Latency of Local Devices: By applying Shannon’s the-
ory [38], we can calculate the data transmission rate of

local device j connected to edge server ¢ in round (¢,k) as
t,k__t,k

rfjk =By klogQ(l + 4 77r7‘7 ), where Bf:k is the bandwidth
of local device (,7) in round (t,k); uf] and Wff are the

transmission power and channel power gain, respectively; and
€ is the Gaussian noise. Then, the transmission time of one
communication round between the local device j and edge

DYk tk
M,whereD
Tij

server ¢ can be calculated by LﬁMff
the size of local model updates.

The computing latency before each round of edge aggrega-
tion can be computed as CPt’k = ?,‘ i where Ct » is the total

CPU cycles required to complete the training in edge round
(t,k) and fi]k is the unit CPU cycles of local device (i, 7).

Since the communication between the local device j and
edge server ¢ includes both model downloading and model
update submission, the total latency? on local devices during
one round of edge aggregation is

T N K J;

=D DD LM+ LPL).

t=1 i=1 k=1 j=1

2) Latency of Edge Servers: On edge servers, they are
mainly responsible for intermediate model aggregation and
transmission. Here we omit the time consumption of model
aggregation since it is negligible compared to that of model
transmission. Similarly to the calculation of the communica-
tion latency of local devices, we can get the total communi-
cation latency of servers as

T N
=2 "> LM,
t=1 i=1
where LM} is the communication time cost for model up-
loading and downloading of edge server 1.
3) Latency of Blockchain Consensus: Let Ly, be the latency
of blockchain consensus in each global round, and denote

_ tk tk
Ly = K?%aT)f(EMi,j +LPS),

as the waiting period for round ¢. Then £, < £, becomes a
constraint for the Raft-based blockchain system to guarantee
that its deployment brings no increase to the overall latency
of BHFL.

4) Total Latency: The total latency, denoted as L, is the
sum of the latency of local devices and edge servers. Note
that the latency of blockchain consensus is not included in
the total latency because the blockchain consensus has been
completed during K rounds of edge aggregation as required
above. Thus, we have:

T N K J;

CiﬁchrEgb:ZZZ

t=1 1=1 k=
T

+23 ) LMl

t=1 i=1

QLMY + LPL)

Jj=1

=

For a rough qualitative analysis, we assume that the number
of local devices connected to each edge server is the same,
which is denoted by J; and we can assume the latency of each
local device is fixed in each round, and thus we use LM, ;
to represent the communication latency of local device (4, 75);
similarly, we use LP; ; and LM; to stand for the computing
latency of local device (7, j) and the latency of edge server ¢,
respectively. Then, we can simplify the above equation as

L~TNJK2E[LM] + E[LP]) + 2T NE[LM'],

where E[LM] = E;[E;[LM} ], E[CP] = E;[E;[LP} %] and

E[LM'] = E;[LM}]. We can see that £ and K are positively
proportional, and thus we can conclude that reducing the fre-
quencies of edge aggregation can lead to lower communication

2This latency can also utilize the value of the slowest device, and the main
solution proposed in this section can be applied similarly.



latency. However, we know that larger K will improve the
convergence performance of BHFL according to Theorem 2.
Thus, K should be determined by jointly considering the
performance and latency of BHFL.

B. Latency Optimization

In this part, we formulate the latency optimization problem
by reducing latency and maintaining the convergence per-
formance of BHFL at the same time. Based on the above
analysis, we know that £ is a linear function of K if we use
the expectations of communication and computing latency to
calculate £, so we can approximately get the optimal K by
solving the following optimization problem:

argmin L

K

st.CL:Q<Q,
C2: Ly, < Ly,
C3: K € NT,

where C1 is the constraint of convergence performance, en-
suring that BHFL can have a good performance to meet
the requirement Q; and C2 constrains the waiting time in
each global round by considering the time consumption of
blockchain consensus; and C3 indicates that /K should be
a positive integer. Then the above optimization problem be-
comes a simple integer linear programming with inequality
constraints, which can be resolved using classical solutions
with polynomial complexity, such as CVXPY [39], to find the
optimal number of edge aggregation rounds, i.e., K*.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate our proposed HieAvg algorithm
and latency optimization scheme via extensive experiments.
We first introduce the experimental settings and then present
the experimental results with discussions.

A. Experimental Settings

BHFL Basic Setting: Unless specified otherwise, we use
the following basic setting in our experiments. We simulate
a BHFL framework with five edge servers, where each edge
server is connected to five local devices. There are two edge
aggregation rounds between two rounds of global aggregation,
i.e., K = 2. Each local device owns at most one class of
data. We assume there are 20% stragglers in each layer, which
means that one edge server cannot submit the edge model
timely in each round of global aggregation and one local
device connected to each edge server fails to upload the local
model timely in each edge aggregation round, respectively.
Besides, we set 79 = 0.9 and A = 0.9 for HieAvg.

Stragglers: For permanent stragglers, they stop submitting
model updates after 40 rounds. And temporary stragglers miss
submissions in multiple single rounds but will continue to
submit in the next round after the missing round.

Dataset: We use MNIST [40] as the example dataset in
BHFL, which contains 70,000 handwritten digits from O to 9.
When there are no stragglers, the accuracy is about 87.75%.

Machines and Platforms: We develop our proposed BHFL
framework based on Python 3.7 and TensorFlow 2.9 on Google
Colab, Raspberry Pi 4 Model B, and AWS EC2. Specifically,
we test the convergence of BHFL on Colab with an A100
GPU and explore the latency of communication for model
synchronization with Raspberry Pi and AWS EC2.

Learning Models: Based on TensorFlow, we create a CNN-
based deep learning model with two convolutional layers, one
max pooling layer, one flattening layer, and one dense layer.
The batch size is 32, the local iteration is one epoch, and the
initial learning rate is 0.001 with the decay rate d = 0.90.

Benchmarks of Aggregation Methods: We consider three
benchmarks based on federated averaging (FedAvg) [1] to
compare with our proposed BHFL framework with HieAvg
from the convergence perspective. The first benchmark con-
siders no stragglers, which is named as W/O Stragglers. For
the second solution dealing with stragglers, only the timely
submissions from local devices and edge servers will be
included in edge aggregation and global aggregation, which is
termed as 7_FedAvg. The third one uses the weights submitted
in the last round as the weights of stragglers in round k or ¢,
which is called D_FedAvg.

Computing and Communication: We calculate the com-
puting and communication latency on machines and platforms
according to the equations in Section V-A. Specifically, we
simulate the model training process of one local device on
Raspberry Pi, and we let the Raspberry Pi communicate with
EC2 to get the latency of communication.

B. Experimental Results

1) Evaluation of Convergence: We first compare the per-
formance of different algorithms in handling both permanent
and temporary stragglers. The results are shown in Fig. 2.
From Fig. 2(a) involving permanent stragglers, we can see
that compared to the ideal case, i.e., W/O Stragglers, the
other three algorithms have various losses of accuracy. The
accuracy of T_FedAvg decreases a lot, and D_FedAvg fails to
converge, while our proposed HieAvg can still have relatively
good accuracy in handling permanent stragglers. In Fig. 2(b)
dealing with temporary stragglers, all algorithms can achieve
good accuracy, but the convergence of HieAvg is smoother
and faster than T_FedAvg and D_FedAvg. These two sets of
experiments illustrate that different kinds of stragglers affect
global convergence, but the proposed HieAvg performs better
in both cases.

—— W/O Stragglers
HieAvg

—— T_FedAvg

—— D_FedAvg

—— WJ/O Stagglers

HieAvg
o3 —— T_FedAvg
0.2 —— D_FedAvg

0 10 20 30 a0 50 0 10 20 30 a0 50

T T
(a) Permanent Stragglers. (b) Temporary Stragglers.

Fig. 2. Comparison with Different Aggregation Algorithms.



> >
o7 o7

°
®

>

&’05

@ oa

Test Accuracy
o o o o o
2 &

(c) Accuracy with Different K.  (d) Accuracy with Different S; and

S/L"j.

Fig. 3. Influences of Parameters on BHFL Training.

Next, we explore the impact of different parameter settings,
including the numbers of local devices, edge servers, edge ag-
gregation rounds, and stragglers in two layers, on HieAvg with
temporary stragglers. By changing J, we obtain the results
shown in Fig. 3(a), which indicates that HieAvg converges
faster when there are fewer local devices. By adjusting the
number of edge servers, as shown in Fig. 3(b), we can get a
similar conclusion. This is because increasing the number of
local devices and edge servers will aggravate the imbalance
of data distribution when the total data volume of MNIST is
fixed under the non-IID situation, thus leading to performance
degradation. Later, we analyze the influence of K on the
accuracy. Fig. 3(c) implies that more edge aggregation rounds
help improve the accuracy because the more frequent edge
aggregation allows each edge server to better integrate the data
characteristics of local devices for local optimization. With the
varying number of stragglers, the results are reported in Fig.
3(d), showing that as the number of stragglers increases, the
model performance decreases. However, even in the case of
40% being stragglers (i.e., S; = 2,.5; ; = 2), HieAvg can still
achieve an accuracy of 0.74.

We then investigate the performance of HieAvg with more
heterogeneity involved, including different data distributions
and inconsistent numbers of local devices at edge servers.
For varying data distributions, We adjust the number of image
classes in MNIST that each local device holds. For example,
non_IID_1 means that each local device has at most 1 class
of images. The results are presented in Fig. 4(a), which
indicates that when the data distribution is more unbalanced,
the model performance is worse. For inconsistent numbers of
local devices connected to each edge server, we aim to test the
aggregation effectiveness of HieAvg. The results in Fig. 4(b)
show that the BHFL framework with HieAvg can still achieve
better performance than the benchmark algorithms.

Finally, we test the convergence performance of HieAvg in
mitigating temporary stragglers in only one layer, i.e., the local
devices or edge servers. From Fig. 5(a) and Fig. 6(a), we can
see HieAvg performs better in both cases compared to other

0.9
Tos
©
507
3

06
;(_, 05 —— non_lID_1 f, 04 —— W/O Stragglers
D non_liD_2 3 03 HieAvg
=04 —— non_liD_3 = —— T_FedAvg

0.3 — D 02 —— D_FedAvg

01
0 10 20 30 40 50 0 10 20 30 40 50
T T

(a) Different Data Distributions.  (b) Comparison with Inconsistent .J;.

Fig. 4. Influences of Data Distribution and Local Device Distribution on
BHFL Training.

°
©

S

—— W/O Stragglers
HieAvg

—— Top_FedAvg

—— D_FedAvg

Test Accuracy

o o o o o

rithms.

fos

H o4

(c) Accuracy with Different N.

(d) Accuracy with Different K.

Fig. 5. Test Accuracy with Only Local Device Stragglers.

algorithms. Furthermore, by varying the values of J, N, and
K, we can find that smaller J and N, as well as larger K
result in higher accuracy, which is consistent with the results
in Fig. 3. These experimental results indicate that HieAvg can
also efficiently handle only local device stragglers or only edge
server stragglers.

2) Evaluation of Latency: First, we calculate the computing
latency and communication latency on Raspberry Pi and EC2,
and the averaged results of three Raspberry Pis are shown in
Fig. 7(a). We can see that the more images on a local device,
the higher the latency. This is because the time spent to process
more data samples in the local training process will increase.
In our basic setting, there are five edge servers and five local
devices for each server, so each local device has 2,400 images,
and thus, the corresponding latency is around 1.67s. The size
of our employed CNN model updates is about 20KB, and
the averaged transmission time between Raspberry Pi and
EC2 is about 0.51s in the ideal scenario. Inspired by [10],
we can assume that the latency among edge servers is 0.05s.
These parameters are used to solve the latency optimization
problem. The latency of Raft-based blockchain consensus will
directly influence the optimal value of K™, and the detailed
results are illustrated in Fig. 7(b), which shows that the longer
the consensus latency, the more the optimal edge aggregation
rounds. Thus, we may adjust K to offset the influence of
blockchain consensus latency on the overall latency.



08 08
> >

07 Qo7
e e
506 506
8 o 0.5

05 v}
< <
04 —— W/O Stragglers o 0.4
3oy HieAvg D o
= —— T_FedAvg =

02 —— D_FedAvg

10 20 30 40 50

T

(a) Accuracy with Different Algo-
rithms.

0.9 0.9

7
0.8 = 08
9 o
0.7
g g
5 06 306
o o
Q05 Sos
<(0 <
4
g — .
03
= =03
0.2
— 0 02
0 10 20 30 40
T

zzz
o
= oo

0.1
50 0 10 20 30 a0 50

(c) Accuracy with Different N. (d) Accuracy with Different K.

Fig. 6. Test Accuracy with Only Edge Server Stragglers.

latency/s

1200 1800 2400 3000 3600
The Number of Images

50 7.5 10.0 125 15.0 17.5 20.0 225 25.0
The Latency of Blockchain Consensus/s

(a) Latency vs. Data Size. (b) K* vs. Consensus Latency

Fig. 7. Evaluation Results of Latency Optimization.

VII. RELATED WORK

Recently, there is an increasing number of studies on HFL.
Lim et al. [7] propose an HFL framework to reduce node
failures and device dropout, and design the resource allocation
and incentive mechanisms to improve the learning efficiency
based on game theory. Liu et al. [10] propose a client-edge-
cloud HFL framework running with the HierFAVG aggregation
algorithm and demonstrate that communication efficiency can
be improved by introducing the hierarchical architecture in
FL. Wang et al. [9] provide theoretical analysis about the
convergence of HFL based on Stochastic Gradient Decent
(SGD) and emphasize the importance of local aggregation
before global aggregation. In [8], the focus is on protecting
participants’ privacy in HFL with flexible and decentralized
control. Newest advancements have pushed HFL towards
greater scalability and novel knowledge sharing paradigms.
A more fundamental shift is seen in framework Hierarchical
Knowledge Structuring (HKS) [41] which aggregates client-
side logits and organizes them into a multi-granularity “knowl-
edge codebook” via hierarchical clustering, allowing clients
to distill knowledge at different levels of abstraction to better
balance personalization and generalization.

With the emergence of blockchain technology, researchers
propose the blockchain-based federated learning framework
to address the challenges of FL, such as the single point of
failure, incentive, and privacy preservation [17], [18]. There
are also some studies applying blockchain in HFL. In [20],

HFL participants are fragmented into multiple microchains to
guarantee security and privacy for large-scale IoT intelligence.
In [21], blockchain is used to verify the model updates from
edge servers. Nguyen et al. [22] design a resource allocation
mechanism among local devices to assist the latency optimiza-
tion of BHFL. In this evolving landscape, our framework’s
choice of a lightweight Raft-based consensus is a deliberate
design trade-off, prioritizing minimal latency for performance-
critical applications over the feature-rich but potentially more
latent smart contract-based ecosystems.

As for the challenges of stragglers, related research can
be classified into three categories: coded federated learning
(CFL), delayed gradient, and straggler-aware adaptation. CFL
is proposed in [24] to speed up FL running the linear regres-
sion task; the basic idea is that local clients transmit coded
data to the central server at the beginning of training so
that the server can compute coded gradients to compensate
for the missing gradients of stragglers. In [25], CodedFedL
mitigates the impact of stragglers for linear and non-linear re-
gression. Although CFL performs well in tolerating stragglers,
it requires extra data transmission and computing, leading to
risks of privacy leakage and excessive resource consumption;
moreover, most CFL-based methods are model-dependent and
thus hard to generalize to diverse deep models. For delayed
gradient methods, AD-SGD is proposed to minimize the
difference between delayed and optimal gradients [27]; Xu
et al. [28] propose live gradient compensation to utilize one-
step delayed gradients. However, such methods only han-
dle stragglers with poor computing power where partially
trained gradients are still available; if stragglers arise from
network disconnections, the server may receive no update
in that round. For straggler-aware adaptation approaches, the
training process is adapted for lagging devices or missing
submissions. A memory enhancement approach, MIFA [29],
is proposed to solve the problem of stragglers by using their
recently submitted updates to correct missing updates; but
this approach can lead to significant estimation bias since
it only relies on the latest updates which cannot accurately
reflect the overall optimization trend. FLulD [30] aims at
workload reduction by identifying “invariant neurons” whose
activations change little during training and then applying
“Invariant Dropout” to exclude them when constructing the
sub-model for straggler devices . The server then sends a
smaller sub-model to lagging clients, proactively lowering both
computation and communication without relying on coded
redundancy or delayed gradients. However, FLulD relies on
correctly identifying invariant neurons, where noisy or non-
stationary training can misclassify useful neurons and degrade
accuracy, with round-specific sub-models increasing protocol
complexity. These limitations motivate the design of HieAvg,
which estimates missing weights from historical differences at
the aggregator without altering client models or depending on
their most recent updates.

Optimizing end-to-end latency is critical for practical FL
deployment. A common strategy, which our work adopts, is to
optimize algorithmic hyperparameters, such as our optimiza-
tion of the edge aggregation rounds, /. Concurrently, recent
research has expanded this scope towards a more holistic



approach. Shaon et al. [42] propose the PAFL framework for
wireless multi-hop networks, formulating a joint optimization
problem that minimizes latency by simultaneously tuning the
transmit power and CPU frequency of client and relay nodes,
as well as network routing paths. In [43], energy consump-
tion is optimized, which is intrinsically linked to latency,
by exploring techniques such as adaptive learning rates and
communication sparsification. Our work on optimizing K is
complementary to these fine-grained, lower-layer approaches,
as the optimal value of K is dependent on the per-round
latency that these techniques aim to minimize.

To overcome the above shortcomings in the existing meth-
ods, we propose a novel aggregation method, HieAvg. It can
be easily applied to more common cases of FL with non-IID
data and even non-convex loss functions to solve the problem
of stragglers in a cost-efficient manner.

VIII. CONCLUSION

In this paper, we propose a decentralized BHFL framework
and design a novel aggregation algorithm HieAvg to ensure
the convergence of BHFL even when there are stragglers
in both local devices and edge servers, where the data is
non-1ID and the loss function can be non-convex. We also
optimize the overall latency of BHFL by jointly considering
the requirement of global model convergence and blockchain
consensus latency. Theoretical analysis for the convergence of
HieAvg is provided and extensive experiments are conducted
to demonstrate the validity and superiority of our proposed
schemes. In the future, we would like to design incentive
and privacy protection mechanisms to further improve the
performance of BHFL.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273—
1282.

[2] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” Foundations and
Trends® in Machine Learning, vol. 14, no. 1-2, pp. 1-210, 2021.

[3] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50-60, 2020.

[4] N. Tabassum, M. Ahmed, N. J. Shorna, U. R. Sowad, M. Mejbah,
and H. Haque, “Depression detection through smartphone sensing: A
federated learning approach.” International Journal of Interactive Mobile
Technologies, vol. 17, no. 1, 2023.

[5] M. Fu, Y. Shi, and Y. Zhou, “Federated learning via unmanned aerial
vehicle,” IEEE Transactions on Wireless Communications, 2023.

[6] S. M. Azimi-Abarghouyi and V. Fodor, “Scalable hierarchical over-the-
air federated learning,” IEEE Transactions on Wireless Communications,
2024.

[71 W. Y. B. Lim, J. S. Ng, Z. Xiong, J. Jin, Y. Zhang, D. Niyato,
C. Leung, and C. Miao, “Decentralized edge intelligence: A dynamic
resource allocation framework for hierarchical federated learning,” IEEE
Transactions on Parallel and Distributed Systems, vol. 33, no. 3, pp.
536-550, 2021.

[8] A. Wainakh, A. S. Guinea, T. Grube, and M. Miihlhéuser, “Enhancing
privacy via hierarchical federated learning,” in 2020 IEEE European
Symposium on Security and Privacy Workshops (EuroS&PW). 1EEE,
2020, pp. 344-347.

[9] J. Wang, S. Wang, R.-R. Chen, and M. Ji, “Demystifying why local
aggregation helps: Convergence analysis of hierarchical sgd,” in Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 2022.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud
hierarchical federated learning,” in ICC 2020-2020 IEEE International
Conference on Communications (ICC). 1EEE, 2020, pp. 1-6.

Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi, “Beyond
inferring class representatives: User-level privacy leakage from federated
learning,” in [EEE INFOCOM 2019-IEEE Conference on Computer
Communications. 1EEE, 2019, pp. 2512-2520.

M. Fang, X. Cao, J. Jia, and N. Gong, “Local model poisoning attacks
to {Byzantine-Robust} federated learning,” in 29th USENIX Security
Symposium (USENIX Security 20), 2020, pp. 1605-1622.

Z. Wang, Q. Hu, and X. Zou, “Can we trust the similarity measurement
in federated learning?” arXiv preprint arXiv:2311.03369, 2023.

G. Pichler, M. Romanelli, L. R. Vega, and P. Piantanida, “Perfectly
accurate membership inference by a dishonest central server in federated
learning,” IEEE Transactions on Dependable and Secure Computing,
2023.

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized Business Review, p. 21260, 2008.

Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, “Blockchain
challenges and opportunities: A survey,” International journal of web
and grid services, vol. 14, no. 4, pp. 352-375, 2018.

H. Kim, J. Park, M. Bennis, and S.-L. Kim, “On-device feder-
ated learning via blockchain and its latency analysis,” arXiv preprint
arXiv:1808.03949, 2018.

D. C. Nguyen, M. Ding, Q.-V. Pham, P. N. Pathirana, L. B. Le,
A. Seneviratne, J. Li, D. Niyato, and H. V. Poor, “Federated learning
meets blockchain in edge computing: Opportunities and challenges,”
IEEE Internet of Things Journal, vol. 8, no. 16, pp. 12806-12 825,
2021.

L. Chen, D. Zhao, L. Tao, K. Wang, S. Qiao, X. Zeng, and C. W. Tan,
“A credible and fair federated learning framework based on blockchain,”
IEEE Transactions on Artificial Intelligence, 2024.

R. Xu and Y. Chen, “udfl: A secure microchained decentralized feder-
ated learning fabric atop iot networks,” IEEE Transactions on Network
and Service Management, 2022.

P. Zhang, Y. Hong, N. Kumar, M. Alazab, M. D. Alshehri, and C. Jiang,
“Bc-edgefl: A defensive transmission model based on blockchain-
assisted reinforced federated learning in iiot environment,” IEEE Trans-
actions on Industrial Informatics, vol. 18, no. 5, pp. 3551-3561, 2021.
D. C. Nguyen, S. Hosseinalipour, D. J. Love, P. N. Pathirana,
and C. G. Brinton, “Latency optimization for blockchain-empowered
federated learning in multi-server edge computing,” arXiv preprint
arXiv:2203.09670, 2022.

Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, ‘“Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

S. Dhakal, S. Prakash, Y. Yona, S. Talwar, and N. Himayat, “Coded
federated learning,” in 2019 IEEE Globecom Workshops (GC Wkshps).
IEEE, 2019, pp. 1-6.

S. Prakash, S. Dhakal, M. Akdeniz, A. S. Avestimehr, and N. Himayat,
“Coded computing for federated learning at the edge,” arXiv preprint
arXiv:2007.03273, 2020.

R. Schlegel, S. Kumar, E. Rosnes et al., “Codedpaddedfl and cod-
edsecagg: Straggler mitigation and secure aggregation in federated
learning,” arXiv preprint arXiv:2112.08909, 2021.

X. Li, Z. Qu, B. Tang, and Z. Lu, “Stragglers are not disaster: A hybrid
federated learning algorithm with delayed gradients,” arXiv preprint
arXiv:2102.06329, 2021.

J. Xu, S.-L. Huang, L. Song, and T. Lan, “Live gradient compensation
for evading stragglers in distributed learning,” in IEEE INFOCOM 2021-
IEEE Conference on Computer Communications. 1EEE, 2021, pp. 1-10.
X. Gu, K. Huang, J. Zhang, and L. Huang, “Fast federated learning
in the presence of arbitrary device unavailability,” Advances in Neural
Information Processing Systems, vol. 34, pp. 12052-12 064, 2021.

D. M. Irene Wang, Prashant J. Nair, “Fluid: Mitigating strag-
glers in federated learning using invariant dropout,” arXiv preprint
arXiv:2307.02623, 2023.

D. Huang, X. Ma, and S. Zhang, “Performance analysis of the raft
consensus algorithm for private blockchains,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, vol. 50, no. 1, pp. 172-181,
2019.

R. Pass, L. Seeman, and A. Shelat, “Analysis of the blockchain protocol
in asynchronous networks,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 2017,
pp. 643-673.

Z. Wang and Q. Hu, “Blockchain-based federated learning: A compre-
hensive survey,” arXiv preprint arXiv:2110.02182, 2021.



(34]

[35]

[36]
(371
[38]

[39]

[40]

[41]

[42]

[43]

D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in 2014 USENIX Annual Technical Conference (Usenix ATC
14), 2014, pp. 305-319.

X. Liu, Z. Zhong, Y. Zhou, D. Wu, X. Chen, M. Chen, and Q. Z. Sheng,
“Accelerating federated learning via parallel servers: A theoretically
guaranteed approach,” IEEE/ACM Transactions on Networking, 2022.
S. U. Stich, “Local sgd converges fast and communicates little,” arXiv
preprint arXiv:1805.09767, 2018.

X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of fedavg on non-iid data,” arXiv preprint arXiv:1907.02189, 2019.

C. E. Shannon, “A mathematical theory of communication,” The Bell
system technical journal, vol. 27, no. 3, pp. 379-423, 1948.

S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling lan-
guage for convex optimization,” Journal of Machine Learning Research,
vol. 17, no. 83, pp. 1-5, 2016.

C. J. B. Yann LeCun, Corinna Cortes, “The mnist database of handwrit-
ten digits,” http://yann.lecun.com/exdb/mnist/.

A. M. A. Wai Fong Tam, Qilei Li, “Hierarchical knowledge structuring
for effective federated learning in heterogeneous environments,” arXiv
preprint arXiv:2504.03505, 2025.

D. C. N. Shaba Shaon, Van-Dinh Nguyen, “Latency optimization
for wireless federated learning in multihop networks,” arXiv preprint
arXiv:2506.12081, 2025.

A. James, “Energy optimization techniques for federated learning on
edge devices,” 03 2025.

Zhilin Wang received his Ph.D. degree in Com-
puter Science from Purdue University. His research
interests include federated learning, security & pri-
vacy, distributed optimization, and blockchain. He’s
actively contributed as a reviewer for prestigious
academic journals and conferences such as IEEE
TPDS, IEEE IoTJ, Elsevier INCA, IEEE TCCN, and
IEEE ICC.

Xiangdong Hu received the B.Eng degree in Com-
puter Science from the NingboTech University,
Ningbo, China, in 2024. He is currently pursuing
his Ph.D. degree in Computer Science at Georgia
State University. He was actively involved in various
' programming competitions, such as ICPC, CCPC,
-~ and CCCC. His research interests include Al secu-
rity & privacy, Multi Large Language Models, and
federated learning.

Qin Hu received her Ph.D. degree in Computer
Science from the George Washington University in
2019. She is currently an Assistant Professor with
the Department of Computer Science, Georgia State
University. She has served on the Editorial Board of
two journals, the Guest Editor for multiple journals,
the TPC/Publicity Co-chair for several workshops,
and the TPC Member for several conferences. Her
research interests include wireless and mobile se-
curity, edge computing, blockchain, and federated
learning.

<«

PO

Minghui Xu received the BS degree in Physics from
the Beijing Normal University, Beijing, China, in
2018, and the PhD degree in Computer Science from
The George Washington University, Washington DC,
USA, in 2021. He is currently a Professor in the
School of Computer Science and Technology, Shan-
dong University, China. His current research focuses
on blockchain, distributed computing, and quantum
computing.

Zehui Xiong is currently a Professor in the School
of Electronics, Electrical Engineering and Computer
Science, Queen’s University Belfast, United King-
dom. Prior to that, he was a researcher with Alibaba-
NTU Joint Research Institute, Singapore. He re-
ceived the PhD degree in Nanyang Technological
University, Singapore. He was the visiting scholar
at Princeton University and University of Waterloo.
His research interests include wireless communica-
tions, network games and economics, blockchain,
and edge intelligence. He has published more than

140 research papers in leading journals and flagship conferences and many of
them are ESI Highly Cited Papers. He has won over 10 Best Paper Awards
in international conferences and is listed in the World’s Top 2% Scientists
identified by Stanford University. He is now serving as the editor or guest
editor for many leading journals including IEEE JSAC, TVT, IoTJ, TCCN,

TNSE, ISJ, JAS.



